Ordering Planet Data - Command Line to API
Derived from: https://planetlabs.github.io/planet-client-python/cli/examples.html
To install:
pip install planet
planet init
log in with usename/password credentials
Ensure you have your API KEY set up (may not be necessary if logged in as above).
Set this as a system variable
In python:
os.environ['PL_API_KEY']='12345'
In BASH:
PL_API_KEY = '12345'
Make list of scenes to order
planet data search --item-type PSScene --geom /Users/dan.sousa/Downloads/map.geojson --date acquired gt 2015-01-01 --date acquired lt 2017-01-01 --range cloud_cover lt .1
--item-type specifies the dataset type (PSScene or orthotile; 3 or 4 or 8 band)
--geom specifies the path to the geojson defining the study area
--date acquired gt is the beginning of the order window
--date acquired lt is the end of the order window
--range cloud_cover lt is cloud cover (less than % of scene)
Save the order
planet data create-search --item-type PSScene --geom /Users/dan.sousa/Downloads/map.geojson --date acquired gt 2015-01-01 --date acquired lt 2017-01-01 --range cloud_cover lt .1 --asset-type analytic_sr
--item-type specifies the dataset type (PSScene or orthotile; 3 or 4 or 8 band)
--geom specifies the path to the geojson defining the study area
--date acquired gt is the beginning of the order window
--date acquired lt is the end of the order window
--range cloud_cover lt is cloud cover (less than % of scene)
--asset-type specifies the processing type (analytic_sr is surface reflectance; analytic is TOA)
Execute the saved search order
planet data saved-search <4782d4118fee4275860665129a1e23c1>
Replace <4782d4118fee4275860665129a1e23c1> with search # from previous command, like
Download the order
planet data download --item-type PSScene asset-type analytic_sr --dest /Users/dan.sousa/Downloads/NewPlanet
--item-type specifies the dataset type (PSScene or orthotile; 3 or 4 or 8 band)
--asset-type specifies the processing type (analytic_sr is surface reflectance; analytic is TOA)
--dest specifies the download location
Convert to common (WGS84) projection and ENVI format
for i in *math.tif; do gdalwarp -t_srs EPSG:4326 -of ENVI ${i} ${i}_e; done
Assumes files of interest end in "math.tif"
WGS-84 (lat/lon) is set using the EPSG code. Pick another if you want a different projection.
Assumes ENVI-formatted output
Pull out 1 of the bands
for i in *_e; do gdal_translate -b 1 -of ENVI ${i} ${i}EVI2; done
Assumes you want band 1. Change the number after -b to change the band
Stack all the single-band images into a single multiband timeseries
gdal_merge.py -o 2020_2021_PlanetSedg_EVI2stack -separate -of ENVI *_eEVI2